
Towards Distributed Trustworthy Traceability and Accountability

Jörn Erbguth a and Jean-Henry Morin a b

a University of Geneva, CUI - ISS, 1227 Carouge, Switzerland
Tel: +41 787256027, E-mail: erbguth@unige.ch - Tel: +41 22 379 02 55, E-mail: Jean-Henry.Morin@unige.ch

b Korea University Business School, Seoul, South Korea

Tel: +82 2 3290 28 93, E-mail: morinj@korea.ac.kr

Abstract

Digital traces play an increasingly important role in our
society. Whether in the context of regulatory compliance,
contractual exchanges or simply for general interactions,
people need to be able to document trustworthy facts. Most
approaches today rely either on Trusted Third Parties, at
best, or more generally on collecting such traces after
problems occur in ways where their authenticity may be
arguable (fabricated, doctored). Blockchain technology
offers an interesting alternative to the problem by allowing
documenting transactions in a distributed consensus ledger
with transparency and immutability properties. This paper
proposes a new approach to the problem leveraging
blockchain technology towards providing a framework for
distributed trustworthy logging of digital facts and traces on
the blockchain as they happen or are needed before
problems arise. Disintermediation of such processes is
likely to significantly help raise trust and accountability in
many aspects of our interactions, whether online or offline.

Keywords:

Compliance, Distributed Trust, Blockchain, Logging,
Digital Traces, Proof

� . Introduction

Our society is increasingly relying on digital services and
interactions. Most of the time things go well and little
attention is paid to anticipating potential problems.
However, when problems arise, we often wish we had been
able to rely on some form of authoritative traces to prove
our case. Such situations frequently lead to a digital quest
trying to dig up electronic bits and pieces of information to
provide as evidence to support our claims. This paper
proposes to revisit this problem by looking at how
blockchain technology can help better prepare for such
situations by providing a simple approach allowing to log
digital traces and facts in a decentralized and trustworthy
way. The next section describes the problem and the
requirements that should be met to achieve this goal.
Section three presents and argues why blockchain
technology is a key element to address the problem before
proposing a design for a framework we called BlockTrace.
We then discuss related work and existing approaches
before concluding.

� . Problem Statement and Requirements

Service request and provisioning involve exchanging
messages. Although all systems maintain logs they
essentially remain locked in silos and rarely carry any form
of publicly verifiable accountability. Worse, logging is
often more an issue of internal readiness to face problems
than regular preparedness in regular operations. As a result,
the issue that needs to be addressed is: how might we be
able to provide a way for services and people to simply
document digital traces in a publicly accountable and
trustworthy way without relying on trusted third parties. In
other words, can we design something allowing systems,
services and people alike to be re-empowered in their
digital responsibility preparedness level before problems
occur rather than facing the current digital haystack of
untrustworthy traces and evidence that need to be collected
after problems arise?
Today, digital traces to be produced as evidence can be
easily fabricated or doctored, hence the growing need for
digital forensics. We still largely rely on contextual
probabilities where undisputable proofs would be desirable.
Software, services and users have almost no option or
choice whether to generate digital traces and no power in
selecting the traces to be presented in case of dispute.
Services that provide secure proof, such as timestamping,
are good examples of notarized services but rely on trusted
third parties, are often cumbersome to use and are rarely
integrated in with common software or services on the side
of their users.
To address this issue we need to find a way allowing the
easy recording of trustworthy digital traces for users and
service developers alike. A key requirement in this context
is not to have to rely on a centralized trusted third party.
Equally important is the ability to log and verify digital
traces asynchronously on a publicly accessible repository.
Trust, accountability and security are of utmost importance
for such an approach. Therefore, recorded traces must be
persistent, immutable and privacy preserving when
necessary. Finally, in order for such an approach to be
generalizable, and therefor useful, it should be considered
as an open framework allowing for a variety of
technologies to be used (e.g., cryptographic algorithms).

� . A Distributed Trust Approach Based on
Blockchain

To this end and to meet the above requirements, the now
more than emerging blockchain technology appears to
provide some the needed fundamental properties. First and
foremost, blockchain technology is a distributed ledger
allowing to record transactions with three major
characteristics. Transparency: all transactions written on the
blockchain are visible to everyone. Persistency and
immutability: transactions are collected in blocks linked to
one another through cryptographic hash functions. As a
result, they cannot be changed without invalidating the
hashes. The blockchain is basically replicated in whole at
all the nodes of the blockchain distributed network. The
consensus is achieved through distributed consensus
algorithms, thus providing a distributed trust network much
more reliable and accountable than centralized trusted third
party approaches.
Therefore, blockchain technology [1] exhibits many of the
fundamental properties needed to achieve our goal. The rest
of this section presents “BlockTrace”, a tentative design
towards a framework for distributed trust logging of digital
traces based on blockchain technology.
The proposed framework is based on asymmetric and
symmetric cryptography, and one-way hash functions [2] to
ensure the desired level of privacy as well as blockchain
technology to meet the design requirements.
From a high level point of view, the approach can be
described in four layers (Figure 1). The base layer upon
which our design sits is the blockchain layer serving as
storage layer. The second layer is the proposed BlockTrace
framework enabling the management of traces together
with the corresponding metadata. The third layer is a trace
management layer allowing the organization of traces into
trails of connected traces. It also allows managing the
different cryptographic keys and hashing functions. Every
trace can use a different encryption key for security and
privacy reasons allowing trace isolation. The top layer is
basically the application layer using the framework such as
for example compliance, contracts or documents.

Figure 1 – Layers of the Trace Recording

The storage layer, basically any blockchain infrastructure,

records a payload together with some blockchain dependent
metadata as a blockchain transaction. Usually this metadata
consists of a reference to the smart contract that is
addressed for the storage, the sender who is paying for the
transaction and through the block identification the
approximate time. On top of the storage layer, the
BlockTrace layer records a hash of the content for which a
trace is needed (Trace Content Hash) and some contextual
information (Trace Context). The context can be used to
identify what was hashed, a related piece of information,
basically anything making sense in relation to the trace to
be logged.. An optional trace signature may also be added
to the payload. Figure 2 shows the overall structure of the
BlockTrace transaction in the blockchain layer.
Example use cases may cover automated logging from
services and software applications, contractual interactions
in any form, including from a web page or even screen
captures. We anticipate many more use cases to be further
defined and documented but this isn’t our focus here.

Figure 2 – Blockchain and Blocktrace Layer

From the framework point of view, the Blocktrace layer
will provide an API to write (putTrace) and read (getTrace)
traces. The method to write a trace is presented in figure 3.
The information that is to be traced is transmitted as a file
traceContent. It is hashed locally in order to avoid sending
private information. The traceContext is the metadata,
claims or other related information an application or user
wants to link to the trace. Since it will be written on the
blockchain its length needs to be minimized. An encryption
of the hash of the traceContent as well as the
traceContext is possible together with a choice of the
encryption methods. With the traceSignature a trace can
be authenticated. The sender is the blockchain account
paying for the transaction fee. The password for the account
might be provided by a configuration or a callback.
Registering long records on the blockchain will result in
high transaction fees. This will be the case, if the

traceContext is long. By default, a blockchain dependent
transaction-fee-limit will be set. This can be overwritten
using the parameter txFeeLimit. With the flag critical the
system is advised to do everything it can to get a trace
written to the blockchain. The txFeeLimit will be ignored
and unsuccessful writing of transactions can be repeated
with higher fuel limits if necessary.

putTrace (
• traceContent file
• traceContext string
• traceSignature string, optional
• hashEncryption boolean, optional
• contextEncryption boolean, optional
• encryptionAlgorithm enum, optional
• encryptionKey string, optional
• sender blockchain-id
• txFeeLimit int, optional
• critical boolean, optional)
Figure 3 – Parameters of the trace writing method

Since writing on the blockchain is asynchronous the
success of writing a trace including the transactionId can be
retrieved through a callback.
For querying the blockchain we also propose a sample
method (figure 4). Since the blockchain is public, the
information could also be accessed directly. However, the
data structure on the blockchain might change with versions
of the contract while the API can be kept stable.

getTrace (

• transactionId
• traceContext – if no encryption used
• enc(traceContext) – if encryption used
• hash(traceContent) – if no encryption used
• enc(hash(traceContent)) – if encryption used
• sender
• date/time-range)

Figure 4 – Alternative parameters for retrieving a trace

The trace context as well as the trace hash can be encrypted.
Whether encryption is useful or required depends on the use
case. There are four different possible encryption policies
depending on whether the hash trace and context are
encrypted or not (Table 1).

Table 1 – Encryption Scenarios
Case Hash Context Meaning
a) Plain text Plain text Log readable and content

verifiable for all
b) Plain text Encrypted Content verifiable but

without context
c) Encrypted Plain text Log readable but content

only verifiable with consent
of the key holder

d) Encrypted Encrypted Completely private traces

Ⅳ . Related Work

The most relevant related work is in the area of time
stamping services. A time stamping protocol exists since
2001 (RFC 3161) [3]. However, this protocol requires trust
in a Time Stamp Authority (TSA) that signs the document
with a trustworthy time value. Two trusted party are
involved: one providing the time and a second verifying the
digital signature of the time provider. A certification
authority provides the key used. The validity of these
signatures are limited and the time stamping has to be
repeated before the signature expires.
Another example is the icanprove service [4] that provides
a virtual browser session in which a user can navigate a
website and take virtual screen-shots at any time. The
screen-shots together with metadata of the session are
documented in a signed pdf by the service. This service is a
very specific use case, relying on trust in that service and
signatures need regular resigning. When tried the PDF did
not contain a signature. A specific application of
time-stamping in medical research is proposed in [5].
To experiment with blockchain technology in this context
we have implemented very easily such a time-stamping
service for file tracing. This rough prototype was
implemented on Ethereum in less than a day. Similar
services are BTProof [6] and OriginStamp [7] [8] for
Bitcoin Trusted Time-stamping.

Ⅴ . Conclusion and Future Work

Time-stamping is a well-established technique to preserve
proofs. However conventional time-stamping services
require trusted third parties and constant resigning of signed
data. Generalizing the issue in terms of trusted traces is a
much-needed feature for our digital society. Blockchain
technology offers a new perspective in this context
providing distributed trustworthy traceability and
accountability. We have proposed a preliminary design that
needs further development and work.

References

[1] Buterin, V. (2014). A next-generation smart contract
and decentralized application platform. white paper.

[2] Schneier, B. (2007). Applied cryptography: protocols,
algorithms, and source code in C. john wiley & sons.

[3] Adams, C., & Pinkas, D. (2001). Internet X. 509 Public
Key Infrastructure Time Stamp Protocol (TSP).

[4] www.icanprove.de (retrieved Oct. 4, 2016)
[5] Irving, G., & Holden, J. (2016). How

blockchain-timestamped protocols could improve the
trustworthiness of medical science. F1000Research, 5.

[6] https://btproof.com (retrieved Oct. 4, 2016)
[7] https://www.originstamp.org (retrieved Oct. 4, 2016)
[8] Gipp, B., Meuschke, N., & Gernandt, A. (2015).

Decentralized Trusted Timestamping using the Crypto
Currency Bitcoin. arXiv preprint arXiv:1502.04015.

